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In this paper we introduce the explicit b1/b2-Bathe method for solving dynamic problems, in particular
wave propagations. Like for the implicit b1/b2-Bathe method, the proposed explicit scheme uses two
sub-steps per time step and can be used directly as a first-order and a second-order method with the
capability to suppress high spurious frequency response. In both sub-steps, standard Taylor series are
employed resulting in an explicit solution scheme. The novelty is that we calculate the final displace-
ments and velocities in each sub-step by applying correction terms using the generalized trapezoidal rule
with control parameters b1 and b2. This approach makes the method a quite simple scheme. We consider
the stability, accuracy and numerical dispersion and give recommendations on the parameter values b1

and b2 to be used in practice. We give the solutions of four problems, three of which are wave propaga-
tion problems, and compare the results with those obtained using other methods. While more experience
in the use of the procedure is needed to understand its full solution capabilities, we can already conclude
that the proposed method is effective in some wave propagation analyses.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction an explicit or implicit method is more effective for the overall
For the solution of dynamic problems in practice, numerical
methods are generally the only option available to solve the equa-
tions of motion. Among the available numerical methods, the direct
time integration methods are widely used. Direct time integration
methods can be divided into two categories; in terms of stability,
we have unconditionally stable and conditionally stable methods,
and in terms of the formulation used, we have explicit and implicit
schemes. If the method is not constrained by a stability condition
for choosing the size of the time step, the method is termed uncon-
ditionally stable; otherwise, it is conditionally stable [1–3].

The most important differences between explicit and implicit
methods are the stability of these methods and their computa-
tional costs [1–30]. An implicit time integration method can be
conditionally or unconditionally stable, while explicit methods
are always conditionally stable [1]. If diagonal mass and damping
matrices are used, the explicit methods generally require less com-
putational effort in each time step than the implicit methods. Since
using an unconditionally stable implicit method, much larger time
steps can in principle be used, it can be difficult to decide whether
solution.
However, there are problem solutions in which an explicit

method can clearly be more effective – namely, when the applied
loads or the response to be calculated require a small time step.
This is frequently the case in the solution of wave propagations,
namely when a small time step of the order of the stability limit
of an explicit solution scheme is inherently needed.

To achieve an accurate solution of wave propagations, the direct
time integration should contain some numerical damping to pre-
vent spurious response, see for example Refs. [1,8,12,17] and this
numerical damping should ideally be optimal, that is, allow as
large a time step as possible for an accurate solution.

Among the implicit methods, the b1=b2-Bathe method can be
very effective in solving wave propagation problems, but it is an
implicit scheme. The excellent performance is due to using two
sub-steps with two parameters b1 and b2 to impose numerical
damping, and use the method as a first-order or a second-order
scheme [17,18], see also Ref. [12].

Our objective in this paper is to present an efficient explicit time
integration method -- the explicit b1=b2-Bathe method. This
scheme also uses two sub-steps as does the implicit b1=b2-Bathe
method, and can also directly be employed as a first-order or a
second-order method. Indeed, the control parameters b1 and b2

are used to obtain the first-order or second-order scheme and to
numerically suppress the response due to high spurious
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frequencies. The use of a first-order scheme can be of advantage in
the solution of wave propagations [17,18].

The first explicit time integration method based on the use of
sub-steps as employed in the implicit Bathe method [10–12] was
proposed by G. Noh and K.J. Bathe [19]. The Noh-Bathe method
uses numerical damping in the framework of the Bathe implicit
scheme to suppress spurious response due to spurious high fre-
quencies. We use the Noh-Bathe method in this paper to illustrate
the response calculated with that scheme versus using the new
scheme and show that the new explicit b1=b2-Bathe method com-
plements and is a further development of the earlier work. An
important point is that the explicit b1=b2-Bathe method can
directly be used as a first-order scheme (like the implicit b1=b2-
Bathe method) and then also shows good performance.

In the following sections, we first present the governing equa-
tions used in the new scheme. Then we study the consistency,
stability, order of accuracy, amplitude decay and period elonga-
tion. Finally, we illustrate the performance of the scheme
through the solution of four example problems, also comparing
the results obtained with those calculated using other schemes.
We conclude that based on the solutions obtained the explicit
b1=b2-Bathe method can be effective for the solution of wave
propagations.

2. The governing equations of the explicit b1=b2-Bathe method

The proposed method uses two sub-steps, with the size of the
first sub-step cDt and the size of the second sub-step ð1� cÞDt.
In each sub-step, we use standard Taylor series to solve for the
unknown accelerations, after which we obtain the velocities and
displacements by applying correction terms using the generalized
trapezoidal rule (as employed in the Newmark method [1,4]) with
the parameters b1 for the velocities and b2 for the displacements.
We use different labels for the constants from those used in the
Newmark method because the b1 and b2 are not constants for sta-
bility but simply constants used in correction terms to achieve
good accuracy ( but then naturally also affecting stability).

Considering linear analysis, in the first sub-step the equations of
motion at time t þ cDt are

M tþcDt €Uþ C tþcDt _Uþ K tþcDtU ¼ tþcDtR ð1Þ
where M, C and K are the mass, damping and stiffness matrices; U
and R represent the vector of nodal displacements/rotations and the
load vector, respectively, and an over dot denotes a time derivative.

The truncated Taylor series expansions give

tþcDt _U ¼t _Uþ cDtð Þt €U ð2Þ
and

tþcDtU ¼tUþ cDtð Þt _Uþ 0:5ð Þ cDtð Þ2 t €U ð3Þ
Substituting Eqs. (2) and (3) into Eq. (1), we obtain

M tþcDt €U¼tþcDtR̂1 ð4Þ
where

tþcDtR̂1¼tþcDtR � C t _Uþ cDtð Þ t €U
h i

� K tUþ cDtð Þt _Uþ 0:5ð Þ cDtð Þ2 t €U
h i

ð5Þ

We note that in Eqs. (2) and (3), the accelerations tþcDt €U are not
used.

The solution of Eq. (4) gives the accelerations at time t þ cDt.
Next, we use Eqs. (2) and (3) again but with the correction terms
added that involve the just calculated accelerations and the param-
eters b1 for the velocities and b2 for the displacements
2

tþcDt _U ¼t _Uþ cDtð Þt €Uþ b1 cDtð Þ tþcDt €U�t €U
� �

ð6Þ

tþcDtU ¼tUþ cDtð Þt _Uþ 0:5ð Þ cDtð Þ2 t €Uþ b2 cDtð Þ2 tþcDt €U�t €U
� �

ð7Þ
The solution for the second sub-step is obtained in an analogous

way. Hence the governing equations are for this sub-step

M tþDt €Uþ C tþDt _Uþ K tþDtU¼tþDtR ð8Þ
tþDt _U ¼tþcDt _Uþ 1� cð Þ Dtð ÞtþcDt €U ð9Þ

tþDtU ¼tþcDtUþ 1� cð Þ Dtð ÞtþcDt _Uþ 0:5ð Þ 1� cð Þ2 Dtð Þ2 tþcDt €U ð10Þ

M tþDt €U ¼ tþDtR̂2 ð11Þ
where

tþDtR̂2¼tþDtR � C tþcDt _Uþ 1� cð Þ Dtð Þ tþcDt €U
h i

�K tþcDtUþ 1� cð Þ Dtð Þ tþcDt _Uþ 0:5ð Þ 1� cð Þ2 Dtð Þ2 tþcDt €U
h i ð12Þ

and then we obtain the final velocities and displacements at time
t þ Dt

tþDt _U ¼tþcDt _Uþ 1� cð Þ Dtð Þ tþcDt €U

þ b1 1� cð Þ Dtð Þ tþDt €U�tþcDt €U
� �

ð13Þ

tþDtU ¼ tþcDtUþ 1� cð Þ Dtð Þ tþcDt _Uþ 0:5ð Þ 1� cð Þ2 Dtð Þ2 tþcDt €U

þb2 1� cð Þ2 Dtð Þ2 tþDt €U� tþcDt €U
� �

ð14Þ
The above equations are used recursively to solve the equations

of motion of the finite element system. Since the accelerations are
not used in Eqs. (2) and (3), and (9) and (10), the scheme is an
explicit integration method. We note that the scheme is quite sim-
ple, even when a banded damping matrix is used, which makes it
an attractive solution method. However for good solution effi-
ciency we usually need to use a lumped mass matrix (as in all
explicit solution schemes).

We should note that in each sub-step the same procedures are
used, but of course, for the sub-steps of sizes cDt and ð1� cÞDt.
Hence if we use c = 0.5, as we shall do below, the two sub-steps
use the same solution algorithms and we may look at this special
case of the scheme as a one-step method.

Comparing the method with the explicit Noh-Bathe scheme, we
see that the Eqns. (1) to (5) and Eqns. (8) to (12) are also used in the
Noh-Bathe scheme but that the correction terms used in Eqns. (6),
(7) and in Eqns. (13), (14) are in general different. These corrections
are applied to calculate the new displacements and velocities at
the end of the sub-step and the full step and involve the important
parameters b1 and b2.

3. Consistency and order of accuracy

To analyze the explicit b1=b2-Bathe scheme, we formulate the
method for a typical single degree of freedom equation [1]

tþDt€u
tþDt _u
tþDtu

2
64

3
75 ¼ A

t€u
t _u
tu

2
64

3
75þ LtþcDt

a r þ LtþDtr ð15Þ

where A is the integration approximation operator, and La and L
denote load operators. These operators are given in Appendix A,
where in that appendixx and n are the frequency of the undamped
system and the damping ratio.



Fig. 2. Amplitude decay of the explicit b =b -Bathe method with b ¼ 0:07b (first
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The order of accuracy quantifies the rate of convergence of the
numerical solution to the exact solution and is given by the local
truncation error

s ¼ 1
Dt

½ tþDtu� A1
tuþ A2

t�Dtu� A3
t�2Dtu� ð16Þ

where A1, A2 and A3 are the invariants of A

A1 ¼ traceðAÞ
A2 ¼ 1

2 traceðAÞð Þ2 � trace A2
� �� �

A3 ¼ detðAÞ
ð17Þ

Expanding the terms in Eq. (16) about t and eliminating the sec-
ond and higher order derivatives, the local truncation error is in
general given by

s ¼ e1Dt þ e2Dt2 þ e3Dt3 þ OðDt4Þ ð18Þ

with the constants ei; i ¼ 1; 2; 3; :::
For the explicit b1=b2-Bathe method, the local truncation error

is given by

s ¼ ð2b1 � 1Þðc2 � cþ 1
2
Þ ð1� 4n2Þ t _u� 2nx tu
� �

x2
� �

Dt2

þ OðDt3Þ ð19Þ
Therefore, since e1 ¼ 0:0, the method is consistent for any val-

ues of the parameters b1 and b2 Considering the accuracy, using
b1–0:5, the method has first-order accuracy and using b1 ¼ 0:5,
the method shows second-order accuracy.
Fig. 3. Period elongation of the explicit b1=b2-Bathe method with b2 ¼ 0:07b1 (first
region).

1 2 2 1

region).
4. Stability, period elongation and amplitude decay

The stability and accuracy of a time integration method can be
investigated by calculating the spectral radius of the integration
approximation operator, qðAÞ, and calculating the period elonga-
tion and amplitude decay [1].

For the explicit b1=b2-Bathe method, the spectral radius is a
function of b1, b2, n, c and Dt=T. The method is stable if qðAÞ 6 1
[1]. We consider the case n ¼ 0 and c ¼ 0:5.

An important feature for an effective use of the method is to be
able to choose the order of solution accuracy – choose the first or
second order – and the time step size for applying numerical
damping, that is, the time step size when the spectral radius
rapidly decreases from the value of 1.

The stability analysis, performed like given for example in Refs.
[1,7], shows that the explicit b1=b2-Bathe method is conditionally
stable, like all explicit methods, hence only stable if Dt 6 Dtcr ,
where Dtcr is the critical time step. The maximum critical time step
Fig. 1. Spectral radius of the explicit b1=b2-Bathe method with b2 ¼ 0:07b1 (first
region).

3

value of the proposed method is twice that of the central difference
method, like for the Noh-Bathe method.

Further analysis also shows that for two regions b1 ¼ ½0:51; 1:2�
with b2 ¼ 0:07b1, and b1 ¼ 0:5 with b2 ¼ ½0; 0:07�, the method
gives good accuracy. In the first region we have first-order accuracy
and in the second region we have second-order accuracy.

Then in the first region, as we change the b1 value from 0.51 to
1.2, the numerical damping is applied earlier; that is, Fig. 1 shows
that with b1 = 0.51 the spectral radius is longest close to 1. We also
see that as b1 increases, the amplitude decay and period elongation
errors increase (see Figs. 2, 3).

Considering the second region, as we increase b2 from 0 to 0.07
the numerical damping is applied earlier, the amplitude decay
Fig. 4. Spectral radius of the explicit b1=b2-Bathe method with b1 ¼ 0:5 (second
region).



Fig. 6. Period elongation of the explicit b1=b2-Bathe method for b1 ¼ 0:5 (second
region).

Fig. 5. Amplitude decay of the explicit b1=b2-Bathe method for b1 ¼ 0:5 (second
region).
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error increases and the period elongation error decreases (see
Figs. 4 to 6). Note that when b2 ¼ 0, no numerical damping is used.

We can compare these results with those given for the Noh-
Bathe scheme in ref. [19], but of course only for the case of
second-order accuracy (the Noh-Bathe scheme is second-order
accurate). This comparison shows that the new second-order expli-
cit b1=b2-Bathe method gives about the same amplitude decays
and period elongations as the Noh-Bathe method, see Figs. 5 and
6 and ref. [19].
5. Illustrative example solutions

In this section, we consider the solutions of four problems to
illustrate the properties of the explicit b1=b2-Bathe method. We
Table 1a
Values of parameters b1 and b2 for very good results, but the user needs to choose.

explicit b1=b2-Bathe

wave propagations b1 2 ½0:51;1:2�; b2 ¼ 0
structural dynamics b1 ¼ 0:5;b2 2 ½0;0:07

Table 1b
Specific values of parameters b1 and b2 for (frequently) good results.

explicit b1=b2-Bathe

wave propagations b1 ¼ 0:6;b2 ¼ 0:07b1
structural dynamics b1 ¼ 0:5;b2 ¼ 0:04

4

compare the solutions obtained using the explicit b1=b2-Bathe
method with those obtained using the central difference, Noh-
Bathe and implicit b1=b2-Bathe methods. For all solutions obtained,
we used the lumped mass matrix, except in Section 5.4 we
employed the consistent mass matrix for the solution with the
implicit b1=b2- Bathe method. For the central difference method
solutions, the starting procedure given in Ref. [1] was used.

For the solutions using the b1=b2-Bathe methods, the values of
the parameters b1 andb2 need to be chosen, and for optimal solu-
tions these values seem to change slightly depending on the prob-
lem solved. We give in Table 1a suggestions for choosing the values
for the parameters b1 and b2. With values in those regions, very
good response predictions may be obtained. However, in practice,
a user needs specific values for ‘‘just” good results, which we there-
fore give in Table 1b. The values given in the tables assume that
lumped and consistent mass matrices are used, respectively, for
the explicit and implicit schemes, and the values are based on
our experiences obtained so far.

Regarding the solution times taken using the new explicit
scheme, we have not run yet very large problems, and have not
used an optimized code, but the required computational time is
estimated to be approximately the same as when using the Noh-
Bathe scheme, both being explicit methods using two sub-steps
for a full time step. Hence the solution time is also about the same
as when using the central difference method with a time step half
the size of the full step.

In each case of the problems solved below, the number of finite
element equations is small and all solutions have been obtained
with a small computational effort.

Clearly, for the solutions of the four problems considered below,
by choosing different values of parameters and CFL many solutions
can be generated. However, we need to focus here on the essence
of the techniques and hence we use the central difference method
with CFL = 1.0 or close thereto, the Noh-Bathe method with the
recommended value of p = 0.54 [19], and choose for the explicit
b1=b2-Bathe method the same CFL as for the Noh-Bathe method.
In addition, we also show briefly the effects of using other param-
eter values to illustrate how the explicit and implicit b1=b2-Bathe
methods perform.

In the following problem solutions we endeavored to obtain
very good results using Table 1a which can lead to the values given
in Table 1b.

5.1. A simple system with 2 degrees of freedom

The equilibrium equations of the system are

2 0
0 1

� 	
€u1ðtÞ
€u2ðtÞ


 �
þ 6 �2

�2 4

� 	
u1ðtÞ
u2ðtÞ


 �
¼ 0

10


 �
ð20Þ
method implicit b1=b2-Bathe method

:07b1 b1 2 ð1=3;1Þ;b2 ¼ 2b1
� b1 2 ½1=3;0:5�;b2 ¼ 1� b1

method implicit b1=b2-Bathe method

b1 ¼ 0:39;b2 ¼ 2b1
b1 ¼ 1=3; b2 ¼ 1� b1



Table 2
The displacement of the first degree of freedom.

Time 0.28 0.56 0.84 1.12 1.4 1.68 1.96 2.24 2.52 2.8 3.08 3.36

Analytical solution 0.003 0.038 0.176 0.486 0.996 1.657 2.338 2.861 3.052 2.806 2.131 1.157
explicit b1/b2-Bathe

(b1 = 0.5, b2 = 0)
0.002 0.036 0.174 0.486 1.001 1.668 2.353 2.874 3.057 2.798 2.108 1.125

implicit b1/b2-Bathe
(b1 = 0.5, b2 = 1-b1)

0.004 0.041 0.179 0.486 0.987 1.637 2.31 2.835 3.041 2.82 2.173 1.221

Central difference 0 0.031 0.168 0.487 1.02 1.7 2.40 2.91 3.07 2.77 2.04 1.02
Trap. rule 0.007 0.051 0.189 0.485 0.961 1.58 2.23 2.76 3 2.85 2.28 1.4

Table 3
The displacement of the second degree of freedom.

Time 0.28 0.56 0.84 1.12 1.4 1.68 1.96 2.24 2.52 2.8 3.08 3.36

Analytical solution 0.382 1.412 2.781 4.094 4.996 5.291 4.986 4.277 3.458 2.806 2.484 2.489
explicit b1/b2-Bathe

(b1 = 0.5, b2 = 0)
0.384 1.42 2.793 4.106 5 5.283 4.966 4.25 3.435 2.798 2.495 2.515

implicit b1/b2-Bathe
(b1 = 0.5, b2 = 1-b1)

0.377 1.396 2.756 4.069 4.986 5.304 5.025 4.329 3.503 2.825 2.466 2.439

Central difference 0.392 1.45 2.83 4.14 5.02 5.26 4.9 4.17 3.37 2.78 2.54 2.60
Trap. rule 0.364 1.35 2.68 4 4.95 5.34 5.13 4.48 3.64 2.90 2.44 2.31

Fig. 7. Absolute error in u1. Fig. 8. Absolute error in u2.
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and we assume that the initial displacements and velocities are
zero. This is a very simple example problem to solve and we
consider it only to indicate that when using an ‘‘acceptable”
time step size for an explicit method may lead to a more accurate
solution than using the same time step size with an implicit
scheme.

With the central difference, trapezoidal rule, implicit b1=b2-
Bathe and explicit b1=b2-Bathe methods we use Dt = 0.28, a time
step size leading to stable results with the central difference
method and the new explicit scheme, for which we could actually
use almost twice the time step size. Also, the control parameters
for each numerical method are selected in such a way that no
numerical damping is applied.

We compare the numerical solutions with the analytical result
for the displacement response. The analytical solution is

û1ðtÞ ¼ 2cosð
ffiffi
5

p
tÞ

3 � 5 cosð
ffiffi
2

p
tÞ

3 þ 1

û2ðtÞ ¼ 3� 4 cosð
ffiffi
5

p
tÞ

3 � 5cosð
ffiffi
2

p
tÞ

3

ð21Þ

The absolute error is given by

Absolute error of dof ðjÞ ¼
Xn

i¼1

ûjðtiÞ � u
�
jðtiÞ

  ð22Þ
5

where j denotes the degree of freedom considered, n denotes the

number of steps, ûj is the analytical solution and u
�
j is the numerical

solution.
The displacement solutions obtained with the explicit b1=b2-

Bathe method and the other methods are listed in Tables 2 and
3. We recall that the solutions using the Noh-Bathe method with
p = 0.5 are equal to those of the proposed method since the case
of c ¼ 0:5 and b1 ¼ 0:5, b2= 0 is considered (that is, for this specific
case, the equations used correspond to those used in the Noh-
Bathe scheme).

Figs. 7 and 8 show the absolute errors. As seen, the errors using
the central difference method are much less than those using the
Trapezoidal Rule and the errors using the explicit b1=b2-Bathe are
less than using the implicit b1=b2-Bathe method (both schemes
employ two sub-steps). These results indicate – as wemight expect
– that when using the same time step size, the use of explicit meth-
ods may lead to more accurate solutions than using implicit
schemes.

5.2. A clamped bar subjected to a step end load

We consider the clamped bar shown in Fig. 9 with the material
and geometrical properties E ¼ 30� 106 psi, q ¼ 0:00073 lb=in3,

Klaus-Jurgen Bathe
Highlight



Fig. 9. A clamped–free bar subjected to a step end load [17].
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A ¼ 1 in2, and L ¼ 200 in. The bar is initially at rest, when the step
end load F(t) = 10,000 lb is suddenly applied. We use 1000 equal 2-
node elements with

Dt ¼ ð9:88� 10�7Þ � CFL

Figs. 10 to 12 give the predicted velocity response at the mid-
point of the bar (node 500). We consider a longer time response
and see significant spurious oscillations at the later time
(Fig. 10). We use in Fig. 10 a slightly smaller CFL than 1.0 because
of the rounding used to obtain the above relation for Dt. The pre-
dicted response using the Noh-Bathe method (Fig. 11) with the rec-
ommended p = 0.54 is better but also shows oscillations [19].

With the explicit b1=b2-Bathe method using b1 ¼ 0:51 and
b2 ¼ 0:07b1, and the same CFL as used with the Noh-Bathe method
(Fig. 12) we obtain an accurate solution with only some very small
spurious oscillations.

In Fig. 13 we show that the explicit b1=b2-Bathe method per-
forms also well when using a smaller CFL, namely CFL = 1.0. Here
we increased b1 to 0.52. We include this solution to show that
the method gives still reasonable results even with a smaller CFL
than used in Fig. 12. As is well known, explicit schemes may per-
form considerably worse when the time step is reduced.
Fig. 10. Predicted velocity at mid-point of

6

Finally, we compare in Figs. 14 and 15 the solutions obtained
with the explicit and implicit b1=b2-Bathe methods. The schemes
show a similar high accuracy for the initial response, with the
explicit b1=b2-Bathe method giving a slightly better result, but this
increase in accuracy is almost negligible.

The solutions in these figures have been obtained using the
first-order explicit b1=b2-Bathe method and show that for this
problem solution the method performs well even when the
response over longer time spans is sought.
5.3. A bi-material rod subjected to a step end load

We consider a rod of two pieces with different material proper-
ties, see Fig. 16. The Young’s moduli are E1 ¼ 8� 103 Pa and
E2 ¼ 8� 102 Pa. The same Poisson’s ratio ðt1 ¼ t2 ¼ 0Þ and density

ðq1 ¼ q2 ¼ 1 kg=m3Þ are assumed for each region. The wave speeds
in the regions are c1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

E1=q1

p
and c2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

E2=q2

p
.

The rod is at rest when suddenly a uniform constant step trac-
tion of unit magnitude is applied at its right end.

In this study, the number of equal size 4- node two-dimensional
elements for discretizing the spatial domain is 1 � 800 (with 400
elements in each piece) with the time-step

Dt ¼ CFL� Dx
c1

¼ CFL� 0:005
40

ffiffiffi
5

p

The stress and velocity predictions at point A are of interest.
Figs. 17 to 28 show the solutions obtained. As expected, the

response predictions using the central difference method show sig-
nificant spurious oscillations. The Noh-Bathe scheme employed
with p = 0.54 also shows significant oscillations. Using the explicit
rod using Central-Difference method.



Fig. 11. Predicted velocity at mid-point of rod using Noh-Bathe method, CFL = 1.8519.

Fig. 12. Predicted velocity at mid-point of rod using explicit b1=b2-Bathe method, b1 ¼ 0:51, CFL = 1.8519.
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Fig. 13. Predicted velocity at mid-point of rod using explicit b1=b2-Bathe method, b1 ¼ 0:52, CFL = 1.0.

Fig. 14. Comparison of results when the explicit and implicit b1=b2-Bathe methods are used, CFL = 1.0.
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b1=b2-Bathe method with the same CFL as with the Noh-Bathe
method, that is CFL = 1.8519, gives slightly better results, but then
using the smaller CFL = 1.5 very good results are obtained, which
we do not obtain employing the Noh-Bathe method with
CFL = 1.5. Similarly, the solution using the implicit b1=b2-Bathe
method with CFL = 1.8519 shows very good accuracy.

5.4. A pre-stressed square membrane

The pre-stressed square membrane shown in Fig. 29 is initially
at rest when suddenly subjected to a constant unit initial velocity
prescribed over its central domain (the gray area) with L = 10 m
8

and l = 7 m The wave velocity and mass density of the membrane
are c ¼ 10 m=s and q ¼ 1 kg=m3, respectively. Due to symmetry,
we only discretize a quarter of the membrane using 150 � 150
equal 4-node elements.

We use

Dt ¼ CFL� Dx
c

¼ CFL
300

for the Noh-Bathe, explicit b1=b2-Bathe and implicit b1=b2-Bathe
methods to obtain the velocity solution at the center point.

Figs. 30 to 34 show the performance of the different schemes.
We use again the recommended value of p = 0.54 for the Noh-



Fig. 15. Sections A-A and B-B of Fig. 14.

Fig. 16. A bi-material rod subjected to a step traction at its right edge.

Fig. 17. Predicted stress at point A usin

Fig. 18. Predicted velocity at point A us
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Bathe method but also p = 0.5858 (also used in ref. [19]) resulting
in CFL = 1.7071. As shown, the Noh-Bathe and explicit b1=b2-Bathe
methods yield good accuracy results with the b1=b2-Bathe scheme
giving slightly better results.

In Fig. 34 we show the solution obtained using the implicit
b1=b2-Bathe method and a smaller CFL, namely CFL = 1.0. Very
good results have been obtained in this solution.
g the Central-Difference method.

ing the Central-Difference method.



Fig. 19. Predicted stress at point A using the Noh-Bathe method, p = 0.54.

Fig. 20. Predicted velocity at point A using the Noh-Bathe method, p = 0.54.

Fig. 21. Predicted stress at point A using the explicit b1=b2-Bathe method, CFL = 1. 8519.
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6. Concluding remarks

The purpose of this paper was to introduce a new effective
explicit direct time integration scheme, the explicit b1/b2-Bathe
method for solving dynamic problems, specifically wave propaga-
tions. Like the implicit Bathe schemes, the method uses two sub-
10
steps per time step. To obtain insight into the method, we mathe-
matically analyzed the scheme with a focus on identifying the role
of the two parameters b1 and b2 and their values. The analysis
shows that the method can be used directly as a first-order or
second-order scheme, with an effective ability to suppress the
response due to high spurious frequencies.



Fig. 22. Predicted velocity at point A using the explicit b1=b2-Bathe method, CFL = 1.8519.

Fig. 23. Predicted stress at point A using the Noh-Bathe method, CFL = 1.5.

Fig. 24. Predicted velocity at point A using the Noh-Bathe method, CFL = 1.5.
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To numerically demonstrate the properties of the explicit b1/b2-
Bathe method, we solved and compared in four problem solutions
the results obtained using the proposed scheme with those calcu-
lated using the central difference and the explicit Noh-Bathe
scheme. Based on the solutions obtained, we observed that the
first-order explicit b1/b2-Bathe method performs remarkably well
even when focusing on the prediction of longer time response.

A comparison of the explicit b1/b2-Bathe method with the Noh-
Bathe scheme shows that the newmethod is in fact a further devel-
11
opment of and complements the Noh-Bathe scheme. In this paper
we simply used the time splitting ratio c to be 0.5, and further
research is needed to establish the effect of changing this value
(like in the Noh-Bathe scheme) to reach the full capabilities of this
method designed for two unequal sub-steps, and to also establish
the effect of physical damping.

However, to obtain the optimal, most accurate response predic-
tion may require some numerical experimentation. Hence we give
a table for choosing the values of b1 and b2. Since a structural



Fig. 25. Predicted stress at point A using the explicit b1=b2-Bathe method, CFL = 1.5.

Fig. 26. Predicted velocity at point A using the explicit b1=b2-Bathe method, CFL = 1.5.

Fig. 27. Predicted stress at point A using the implicit b1=b2-Bathe method, CFL = 1.8519.
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response is fundamentally different from a wave propagation
response, parameter values are given for each of these response
calculations. In the first part of the table, ranges are given to choose
from for optimal response predictions, and in the second part of
the table, specific values are given to obtain in general quite accu-
rate, but not necessarily most accurate, response predictions. Using
the values in the second part of the table, we assume that no
12
numerical experimentation is performed (but can of course also
be conducted). We used the values given in the table to demon-
strate the solution accuracy of the scheme.

We have seen, in some problem solutions, that using the expli-
cit b1/b2- Bathe method, accurate response predictions were
obtained due to the effective application of numerical damping.
In practice, of course, spurious oscillations can frequently be seen



Fig. 28. Predicted velocity at point A using the implicit b1=b2-Bathe method, CFL = 1.8519.

Fig. 29. The square membrane [16].

Fig. 30. Predicted velocity at center point u

Fig. 31. Predicted velocity at center point using th
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13
in numerical solutions, although no exact solution is available, and
hence the proposed scheme gives means to suppress these
oscillations.

Although we solved only linear problems, the scheme is funda-
mentally simple and can directly be applied to solve nonlinear
problems as well.

However, for the ‘‘automatic optimal use” of the method further
analyses, more insight, and more experiences with the use of the
method are needed. The change of the splitting ratio c and the
analysis of the corresponding effects are of particular interest since
additional benefits may be reached by taking full advantage of the
two sub-steps used. This research may then lead to an automatic
very effective solution algorithm.
sing the Noh-Bathe method, p = 0.54.

e explicit b1=b2-Bathe method, CFL = 1.8519.



Fig. 32. Predicted velocity at center point using the Noh-Bathe method, p = 0.5858.

Fig. 33. Predicted velocity at center point using the explicit b1=b2-Bathe method, CFL = 1.7071.

Fig. 34. Predicted velocity at center point using the implicit b1=b2-Bathe method, consistent mass matrix, CFL = 1.
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Appendix A. Approximation operators of the proposed method

tþDt€u
tþDt _u
tþDtu

2
64

3
75 ¼ A

t€u
t _u
tu

2
64

3
75þ LtþcDt

a r þ LtþDtr ð23Þ

where
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A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
64

3
75; La ¼

Q1

Q2

Q4

8><
>:

9>=
>;; L ¼

1
Q3

Q5

8><
>:

9>=
>; ð24Þ

b1 ¼ �2nxðcDtÞ � 0:5x2ðcDtÞ2
b2 ¼ �2nx�x2ðcDtÞ
b3 ¼ �x2

b4 ¼ ð1� b1ÞðcDtÞ þ b1ðcDtÞb1

b5 ¼ 1þ b1ðcDtÞb2

b6 ¼ b1ðcDtÞb3

b7 ¼ ðcDtÞ2 ð0:5� b2Þ þ b2b1ð Þ
b8 ¼ ðcDtÞ þ b2ðcDtÞ2b2

b9 ¼ 1þ b2ðcDtÞ2b3

a11 ¼ �2nxb4 � 2nxðDtÞð1� cÞb1 �x2b7 �x2ðDtÞð1� cÞb4 � 0:5x2ðDtÞ2ð1� cÞ2b1

a12 ¼ �2nxb5 � 2nxðDtÞð1� cÞb2 �x2b8 �x2ðDtÞð1� cÞb5 � 0:5x2ðDtÞ2ð1� cÞ2b2

a13 ¼ �2nxb6 � 2nxðDtÞð1� cÞb3 �x2b9 �x2ðDtÞð1� cÞb6 � 0:5x2ðDtÞ2ð1� cÞ2b3

a21 ¼ b4 þ ð1� b1ÞðDtÞð1� cÞb1 þ b1ðDtÞð1� cÞa11
a22 ¼ b5 þ ð1� b1ÞðDtÞð1� cÞb2 þ b1ðDtÞð1� cÞa12
a23 ¼ b6 þ ð1� b1ÞðDtÞð1� cÞb3 þ b1ðDtÞð1� cÞa13
a31 ¼ b7 þ ðDtÞð1� cÞb4 þ ð0:5� b2ÞðDtÞ2ð1� cÞ2b1 þ b2ðDtÞ2ð1� cÞ2a11

a32 ¼ b8 þ ðDtÞð1� cÞb5 þ ð0:5� b2ÞðDtÞ2ð1� cÞ2b2 þ b2ðDtÞ2ð1� cÞ2a12

a33 ¼ b9 þ ðDtÞð1� cÞb6 þ ð0:5� b2ÞðDtÞ2ð1� cÞ2b3 þ b2ðDtÞ2ð1� cÞ2a13

q1 ¼ b1ðcDtÞ
q2 ¼ b2ðcDtÞ2
Q1 ¼ �2nxq1 � 2nxðDtÞð1� cÞ �x2q2 �x2ðDtÞð1� cÞq1 � 0:5x2ðDtÞ2ð1� cÞ2
Q2 ¼ q1 þ ð1� b1ÞðDtÞð1� cÞ þ b1ðDtÞð1� cÞQ1

Q3 ¼ b1ðDtÞð1� cÞ
Q4 ¼ q2 þ ðDtÞð1� cÞq1 þ ð0:5� b2ÞðDtÞ2ð1� cÞ2 þ b2ðDtÞ2ð1� cÞ2Q1

Q5 ¼ b2ðDtÞ2ð1� cÞ2

ð25Þ
References

[1] Bathe KJ. Finite element procedures: Prentice Hall; 1996, 2nd edition KJ Bathe,
Watertown, MA, 2014; also published by Higher Education Press China 2016.

[2] Dokainish MA, Subbaraj K. A survey of direct time integration methods in
computational structural dynamics. I. Explicit methods. Comput Struct
1989;32(6):1371–86.

[3] Subbaraj K, Dokainish MA. A survey of direct time integration methods in
computational structural dynamics. II. Implicit methods. Comput Struct
1989;32(6):1387–401.

[4] Newmark NM. A method of computation for structural dynamics. J Eng Mec
Div, ASCE 1959;85(3):67–94.

[5] Jia C, Bursi OS, Bonelli A, Wang Z. Novel partitioned time integration methods
for DAE systems based on L-stable linearly implicit algorithms. Int J Numer
Meth Eng 2011;87(12):1148–82.

[6] Liua T, Huanga F, Wen W, He W, Duan S, Fang D. Further insights of a
composite implicit time integration scheme and its performance on linear
seismic response analysis. Eng Struct 2021;241:112490.
15
[7] Bathe KJ, Wilson EL. Stability and accuracy analysis of direct integration
methods. Int J Earthq Eng Struct Dyn 1973;1(3):283–91.

[8] Chung J, Hulbert GM. A time integration algorithm for structural dynamics
with improved numerical dissipation: the Generalized-alpha method. J Appl
Mech Trans ASME 1993;60:371–5.

[9] Bathe KJ, Baig MMI. On a composite implicit time integration procedure for
nonlinear dynamics. Comput Struct 2005;83:2513–24.

[10] Bathe KJ. Conserving Energy and Momentum in Nonlinear Dynamics: A Simple
Implicit Time Integration Scheme. Comput Struct 2007;85:437–45.

[11] Bathe KJ, Noh G. Insight into an implicit time integration scheme for structural
dynamics. Comput Struct 2012;98:1–6.

[12] Noh G, Bathe KJ. The Bathe Time Integration Method with Controllable
Spectral Radius: the q1- Bathe Method. Comput Struct 2019;212:299–310.

[13] Shojaee S, Rostami S, Abbasi A. An unconditionally stable implicit time
integration algorithm: modified quartic B-spline method. Comput Struct
2015;153:98–111.

[14] Malakiyeh MM, Shojaee S, Hamzehei-Javaran S. Development of a direct time
integration method based on Bezier curve and 5th-order Bernstein basis
function. Comput Struct 2018;194:15–31.

[15] Malakiyeh MM, Shojaee S, Hamzehei-Javaran S. Insight into an implicit time
integration method based on Bezier curve and third-order Bernstein basis
function for structural dynamics. Asian J Civil Eng 2018;19(1):1–11.

[16] Malakiyeh MM, Shojaee S, Hamzehei-Javaran S, Tadayon B. Further insights
into time-integration method based on Bernstein polynomials and Bezier
curve for structural dynamics. Int J Struct Stab Dyn 2019:1950113.

[17] Malakiyeh MM, Shojaee S, Bathe KJ. The Bathe time integration method
revisited for prescribing desired numerical dissipation. Comput Struct
2019;212:289–98.

[18] Malakiyeh MM, Shojaee S, Hamzehei-Javaran S, Bathe KJ. New insights into the
b1/b2-Bathe time integration scheme when L-stable. Comput Struct
2021;245:106433.

[19] Noh G, Bathe KJ. An explicit time integration scheme for the analysis of wave
propagations. Comput Struct 2013;129:178–93.

[20] Soares D. A novel family of explicit time marching techniques for structural
dynamics and wave propagation models. Comput Methods Appl Mech Eng
2016;311:838–55.

[21] Soares D. A novel time-marching formulation for wave propagation analysis:
The adaptive hybrid explicit method. Comput Methods Appl Mech Eng
2020;366:113095.

[22] Kim W, Reddy JN. Novel explicit time integration schemes for efficient
transient analyses of structural problems. Int J Mech Sci 2020;172:105429.

[23] Wood WL. Practical time-stepping schemes. Oxford: Claredon Press; 1990.
[24] Chung J, Lee JM. A new family of explicit time integration methods for linear

and non-linear structural dynamics. Int J Numer Methods Eng
1994;37:3961–76.

[25] Hulbert GM, Chung J. Explicit time integration algorithms for structural
dynamics with optimal numerical dissipation. Comput Methods Appl Mech
Eng 1996;137:175–88.

[26] Chang SY, Liao WI. An unconditionally stable explicit method for structural
dynamics. J Earthquake Eng 2005;9:349–70.

[27] Noh G, Ham S, Bathe KJ. Performance of an implicit time integration scheme in
the analysis of wave propagations. Comput Struct 2013;123:93–105.

[28] Benitez JM, Montans FJ. The value of numerical amplification matrices in time
integration methods. Comput Struct 2013;128:243–50.

[29] Noh G, Bathe KJ. Imposing displacements in implicit direct time integration & a
patch test. Adv Eng Softw 2023;175:103286.

[30] Wood WL. Numerical integration of structural dynamics equations including
natural damping and periodic forcing terms. Int J Numer Meth Eng 1981;17
(2):281–9.

http://refhub.elsevier.com/S0045-7949(23)00122-0/h0010
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0010
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0010
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0015
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0015
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0015
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0020
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0020
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0025
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0025
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0025
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0030
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0030
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0030
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0035
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0035
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0040
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0040
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0040
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0045
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0045
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0050
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0050
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0055
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0055
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0060
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0060
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0060
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0065
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0065
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0065
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0070
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0070
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0070
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0075
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0075
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0075
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0080
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0080
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0080
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0085
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0085
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0085
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0090
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0090
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0090
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0095
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0095
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0100
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0100
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0100
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0105
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0105
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0105
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0110
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0110
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0115
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0120
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0120
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0120
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0125
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0125
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0125
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0130
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0130
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0135
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0135
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0140
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0140
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0145
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0145
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0150
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0150
http://refhub.elsevier.com/S0045-7949(23)00122-0/h0150

	The explicit β1/β2-Bathe time integration method
	1 Introduction
	2 The governing equations of the explicit [$]{\beta}_{{\bf{1}}}/{\beta}_{{\bf{2}}}[$]‐Bathe method
	3 Consistency and order of accuracy
	4 Stability, period elongation and amplitude decay
	5 Illustrative example solutions
	5.1 A simple system with 2 degrees of freedom
	5.2 A clamped bar subjected to a step end load
	5.3 A bi-material rod subjected to a step end load
	5.4 A pre-stressed square membrane

	6 Concluding remarks
	Declaration of Competing Interest
	Appendix A Approximation operators of the proposed method
	References




